Automated Testing using
Symbolic Execution and Temporal Monitoring

Cyrille Artho?, Allen Goldberg®, Klaus Havelund P,
Sarfraz Khurshid ¢, Mike Lowry 4, Corina Pasareanu®,

Grigore Rosu ®, Willem Visser !, Rich Washington

aComputer Systems Institute, ETH Zurich, Switzerland
b Kestrel Technology, NASA Ames Research Center, USA
CMIT Computer Science and Artificial Intelligence Laboratory, USA
dNASA Ames Research Center, USA

¢ Department of Computer Science, Univ. of Illinois at Urbana-Champaign, USA
fRIACS, NASA Ames Research Center, USA

Abstract

Software testing is typically an ad hoc process where human testers manually
write test inputs and descriptions of expected test results, perhaps automating their
execution in a regression suite. This process is cumbersome and costly. This paper
reports results on a framework to further automate this process. The framework
consists of combining automated test case generation based on systematically ex-
ploring the program’s input domain, with runtime analysis, where execution traces
are monitored and verified against temporal logic specifications, and analyzed by
concurrency error detection algorithms. The approach suggests a methodology for
generating specifications dynamically for each input instance rather than statically
once-and-for-all. This approach of generating properties specific to a single test case
is novel. The paper describes an application of this methodology to a planetary rover
controller.

Key words:

Automated testing, test-case generation, model checking, symbolic execution,
runtime analysis, temporal logic monitoring, concurrency analysis, C++, planetary
rover controller.

Preprint submitted to Theoretical Computer Science 20th October 2003

1 Introduction

A program is typically tested by manually creating a test suite, which in turn
is a set of test cases. An individual test case is a description of a test input
sequence to the program, and a description of properties that the correspond-
ing output is expected to have. This manual procedure may be unavoidable
since for real systems, writing test cases is an inherently innovative process
requiring human insight into the logic of the application being tested. Discus-
sions with robotics and space craft engineers at NASA seems to support this
view. However, an equally widespread opinion is that a non-trivial part of the
testing work can be automated. In a case study, an 8,000-line Java application
was tested by different student groups using different testing techniques [5]. It
is conjectured that the vast majority of bugs in this system that were found
by the students could have been found in a fully automatic way. The paper
presents work on applying low-overhead automated testing to identify bugs
quickly. We suggest a framework for generating test cases in a fully automatic
way as illustrated by Figure 1. For a particular program to be tested, one
establishes a test harness consisting of four modules: a test input generator
module, a property generator module, a program instrumentation module and
an observer module.

Property
generation

Program

Observer
Instrumentation

Figure 1. Test case generation (test input generation and property generation) and
runtime analysis (instrumentation and observation).

Test input
generation

The test input generator automatically generates inputs to the application,
one by one. A generated input is fed to the the property generator, which
automatically generates a set of properties that the program should satisfy
when executed on that input. The input is then fed to the program, which
executes, generating an execution trace. The observer module “observes” the
executing program, checking its behavior against the generated set of prop-
erties. That is, the observer takes as input an execution trace and the set of
properties generated by the property generator. The program itself must be
instrumented to report events that are relevant for monitoring that the prop-
erties are satisfied on a particular execution. This instrumentation can in some
cases be automated. The test input generator and the property generator are
both written (“hard-wired”) specifically for the application that is tested. This
replaces manual construction of test cases. However, the observer module is
generic and can be re-used on different applications. In the rest of this paper

the term test case generation is used to refer to test input generation and prop-
erty generation, and the term runtime analysis to refer to instrumentation as
well as observation.

The framework described above has been applied to a case study, a planetary
rover controller. Test cases are generated using a model checker and the prop-
erties generated are specific to a single test case. Properties are expressed in
temporal logic. The approach of generating properties specific to a single test
case is novel.

The paper is organized as follows. Section 2 outlines our technology for test
case generation: symbolic execution and model checking. Section 3 describes
the runtime analysis techniques: temporal logic monitoring and concurrency
analysis. Section 4 describes the case study, where these technologies are ap-
plied to a planetary rover controller. Finally Section 5 concludes the paper
and outlines how this work will be continued.

2 Test Case Generation

This section presents the test case generation framework. As mentioned earlier,
test generation is considered as consisting of test input generation and property
generation.

2.1 Test Input Generation

2.1.1 Model based testing

In practice today, the generation of test inputs for a program under test is a
time-consuming and mostly manual activity. However, test input generation
naturally lends itself to automation, and therefore has been the focus of much
research attention — recently it has also been adopted in industry [28,35,9,12].
There are two main approaches to generating test inputs automatically: a
static approach that generates inputs from some kind of model of the system
(also called model-based testing), and a dynamic approach that generates
tests by executing the program repeatedly, while employing criteria to rank
the quality of the tests produced [24,34]. The dynamic approach is based on
the observation that test input generation can be seen as an optimization
problem, where the cost function used for optimization is typically related
to the code coverage (e.g. statement or branch coverage). The model-based
test input (test case) generation approach is used more widely (see Hartman’s
survey of the field [14]). The model used for model-based testing is typically

a model of expected system behavior and can be derived from a number of
sources, namely, a model of the requirements, use cases, design specifications
of a system [14] — even the code itself can be used to create a model (e.g.
symbolic execution based approaches [23,28]). As with the dynamic approach,
it is most typical to use some notion of coverage of the model to derive test
inputs, i.e., generate inputs that cover all transitions (or branches, etc.) in the
model.

On the one hand, constructing a model of the expected system behavior can
be a costly process. On the other hand, generating test inputs just based
on a specification of the input structure and input pre-conditions can be very
effective, while typically less costly. In [22] we present a verification framework
that combines symbolic erecution and model checking techniques in a novel
way. The framework can be used for test input generation as follows: the input
model is described as a non-deterministic program annotated with constraints
that describes all valid inputs, and the model checker is used to traverse the
(symbolic) state space of this program. As the property the model checker
should check for, one asserts that no such test input exists — this causes the
model checker to produce a counter-example whenever a valid test input has
been generated, and from this counter-example trace we then produce the test
input. It is important that various techniques for searching the state space
should be available since this gives the flexibility to generate a large array
of test inputs to achieve better coverage of the behavior of the system under
test. For test input generation we use the Java PathFinder model checker
(JPF) that analyzes Java programs [36] and supports various heuristic search
strategies (for example, based on branch coverage [13] or random search). In
Section 4.2 we show how this model checker is used to generate test inputs for
the Mars K9 rover.

Using symbolic execution for test case generation is a well-known approach,
but typically only handles sequential code with simple data. In previous work,
this technique has been extended to handle complex data-structures (e.g. lists
and trees), concurrency as well as linear constraints on integer data [22]. Sym-
bolic execution of a program path results in a set of constraints that define
program inputs that execute the path; these constraints can often be solved
using off-the-shelf decision procedures to generate concrete test inputs. When
the program represents an executable specification, symbolic execution of the
specification enables us to generate inputs that give us, for instance, full spec-
ification coverage. Note that these specifications are typically not very large —
no more than a few thousand lines, in our experience — and hence will allow
efficient symbolic execution.

The most closely related work to ours is the Korat tool [4] that generates
test inputs from Java predicates, but instead of model checking they use a
dedicated, efficient, search strategy. The use of the counter-example capability

T Xy Y
- PC:t
_ . P rue
int x ; B ‘ B ‘
¢ Y5 XXy XX ynY
read x,y; PCX>Y (PCIX<=Y
. 2
: > PR Y
1: if (x> y) { KR
2: X=X +7y; LPCIX>Y
3
3: y=x-75 XYY X
4. X=X -7Y; 3,F’,C1,X,IY,,,,:
. 4
5: if (x>y) AR
6: assert(false); 5 PCIX2Y. g
} x Y,y X Y,y X
L PC: X>Y & Y>X (PCIX>Y & Y<=X
Do FALSE!

Figure 2. Code for swapping integers and corresponding symbolic execution tree.

of a model checker to generate test inputs have also been studied by many
others (see [20] for a good survey), but most of these are based on a full system
model, not just the input structure and pre-conditions as suggested here.

2.1.2 Symbolic Execution for Test Input Generation

The enabling technology for black-box test-input generation from an input
specification is the use of symbolic execution. Optionally the system under
test itself can be symbolically executed, for white-box testing, the techniques
are in fact the same. The main idea behind symbolic execution [23] is to use
symbolic values, instead of actual data, as input values, and to represent the
values of program variables as symbolic expressions. The state of a symboli-
cally executed program includes, in addition to the (symbolic) values of pro-
gram variables and the program counter, a path condition. The path condition
is a (quantifier-free) Boolean formula over the symbolic inputs; it accumulates
constraints which the inputs must satisfy in order for an execution to follow
the particular associated path. A symbolic execution tree characterizes the ex-
ecution paths followed during the symbolic execution of a program. The nodes
represent program states and the arcs represent transitions between states.

Consider as an example (taken from [22]) the code fragment in Figure 2,
which swaps the values of integer variables x and y, when x is greater than
y. Figure 2 also shows the corresponding symbolic execution tree. Initially,
the path condition, PC, is true and x and y have symbolic values X and Y,
respectively. At each branch point, PC is updated with assumptions about the
inputs according to the alternative (possible) paths. For example, after the
execution of the first statement, both then and else alternatives of the if
statement are possible, and PC is updated accordingly. If the path condition
becomes false, i.e., there is no set of inputs that satisfy it, this means that the
symbolic state is not reachable, and symbolic execution does not continue for

Decision
procedures

continue/backtrack

input specification Model state - =
and precondition — checking |~ > heap configuration

/

test coverage
criterion

test suite
[constraints on inputs + thread scheduling]

Figure 3. Framework for test input generation.

that path. For example, statement (6) is unreachable. In order to find a test
input to reach branch statement (5) one needs to solve the constraint X > Y
— e.g. make the inputs x and y, respectively 1 and 0.

Symbolic execution traditionally arose in the context of sequential programs
with a fixed number of integer variables. We have extended this technique to
handle dynamically allocated data structures (e.g. lists and trees), complex
preconditions (e.g. only acyclic lists), other primitive data (e.g. strings) and
concurrency. A key feature of our algorithm is that it starts the symbolic
execution of a procedure on uninitialized inputs and it uses lazy initialization
to assign values to these inputs, i.e., it initializes parameters when they are
first accessed during the procedure’s symbolic execution. This allows symbolic
execution of procedures without requiring an a priori bound on the number of
input objects. Procedure preconditions are used to initialize inputs only with
valid values.

As mentioned before our symbolic execution-based framework is built on top
of the Java PathFinder (JPF) model checker [36]. JPF is an explicit-state
model checker for Java programs that is built on top of a custom-made Java
Virtual Machine (JVM). It can handle all of the language features of Java,
and in addition it treats non-deterministic choice expressed in annotations
of the program being analyzed. For symbolic execution the model checker
was extended to allow backtracking whenever a path-condition is unsatisfiable
(determined by calling a decision procedure).

2.1.8 Framework for Test Input Generation

Figure 3 illustrates our framework for test input generation. The input speci-
fication is given as a non-deterministic Java program that is instrumented to
add support for manipulating formulas that represent path conditions. The
instrumentation allows JPF to perform symbolic execution. Essentially, the

model checker explores the (symbolic) state space of the program (for exam-
ple, the symbolic execution tree in Figure 2). A symbolic state includes a heap
configuration, a path condition on integer variables, and thread scheduling in-
formation. Whenever a path condition is updated, it is checked for satisfiability
using an appropriate decision procedure; currently our system uses the Omega
library [30] that manipulates linear integer constraints. If the path condition
is unsatisfiable, the model checker backtracks. A testing coverage criterion is
encoded in the property the model checker should check for. This causes the
model checker to produce a counter-example whenever a valid (symbolic) test
input has been generated and from this trace we produce a (concrete) test in-
put. Since only input variables are allowed to be symbolic, all constraints that
are part of a counter-example are described in terms of inputs, and finding
a solution to these constraints will allow a valid set of test data to be pro-
duced. Currently a simple approach is used to find these solutions. Only the
first solution is considered. In future work we will refine the solution discovery
process to also consider characteristics such as boundary cases.

Currently, the model checker is not required to perform state matching, since
state matching is, in general, undecidable when states represent path con-
ditions on unbounded data. It is also important that performing symbolic
execution on programs with loops can explore infinite execution trees (and
it might not terminate). Therefore, for systematic state space exploration,
limited depth-first search or breadth-first search is used; our framework also
supports heuristic-based search [13].

2.2 Property Generation

Any verification activity is in essence a consistency check between two arti-
facts. In the framework presented here the check is between the execution of
the program on a given input, and an automatically generated specification for
that given input, consisting of a set of properties about the corresponding ex-
ecution trace. In other contexts it may be a check of the consistency between
the program and a complete specification of the program under all inputs.
This redundancy of providing a specification in addition to the program is
expensive but necessary. The success of a verification technology partly de-
pends on the cost of producing the specification. The hypothesis of this work
is twofold. First, focusing on the test effort itself and writing "testing oriented"
properties, rather than a complete formal specification may be a cheaper de-
velopment process. Second, automatically generating the specification from
the input may be easier than writing a specification for all inputs.

More precisely, the artifact produced here is a program that takes as input an
input to a program and generates a set of properties, typically assertions in

linear temporal logic. The assertions are then checked against each program
execution using the runtime analysis tools described in Section 3. For the case
study presented in Section 4, writing this program was straightforward, and
considerably easier than writing a single set of properties relevant to all inputs.

Notice that this approach leverages the runtime monitoring technology to great
effect, just as test case generation leverages model checking and symbolic anal-
ysis. In addition, we anticipate the development of property generation tools
specific to a domain or class of problems. The software under test in our case
study is an interpreter for a plan execution language. In this circumstance,
the program to generate properties uses the decomposition of the plan with
respect to the grammar of the plan language. Like a trivial compiler, the
property generator produces test-input-specific properties as semantic actions
corresponding to the parse. Several of NASA’s software systems have an in-
terpreter structure, and it is anticipated that this testing approach can be
applied to several of these as well.

3 Runtime Analysis

Runtime analysis consists of observing the execution of a program, which in
turn requires capturing relevant execution events through ewvent extraction.
The events generated by the program are evaluated by an observer for confor-
mance to desired properties. Events can be transmitted via inter-process com-
munication or stored as a file. This allows for running the observer remotely
and with little impact on the performance of the system under test. In our
case study, the research tool Java PathExplorer (JPaX) was used [16]. The ar-
chitecture of the JPaX runtime analysis framework is designed to allow several
different event interpreters to be easily plugged into the observer component.
In the experiment, two event interpreters were used: one algorithm analyzes
temporal logic properties, and the other one checks concurrency properties.
These algorithms are discussed below.

3.1 FEwvent Extraction

The event extraction can be achieved in a number of ways, including wrapping
and instrumentation. In a wrapping approach, the standard execution environ-
ment is replaced with a customized one that allows observation by wrapping
system libraries. This is the approach of Purify [31]. In the instrumentation
approach, source code (or object code) is augmented with code that generates
the event stream. Our experiments use both approaches. The instrumentation
approach is used to generate events for the temporal logic monitoring. As will

be explained, this monitoring examines events indicating the start and end
of task executions, and the code has been manually instrumented to generate
these events. The wrapping approach is used to generate events for the concur-
rency analysis, where lock acquisitions and lock releases are monitored. These
events are generated by wrapping method calls around POSIX [27]| thread
methods, and then instrument the wrappers.

We are working on technology for automatic program instrumentation. Here
code is instrumented based on an instrument specification that consists of
a collection of predicate/action rules. The predicate is a predicate on pro-
gram statements. These predicates are conjunctions of atomic predicates that
include method invocations, references to global variables, object variables,
and local variables, and lock usage. The actions are specifications describing
the inserted instrumentation code. The actions include reporting the program
location, a time stamp, the executing thread, the value of variables or an ex-
pression, and invocation of auxiliary methods. Values of primitive types are
recorded in the event itself, but if the value is an object, a unique integer
descriptor of the object is recorded.

Such an instrumentation package, named jSpy, has been implemented for in-
strumenting Java bytecode [11]|. This was first implemented using Jtrek [7], a
Java API that provides lower-level instrumentation functionality. In general,
use of bytecode instrumentation, and use of Jtrek in particular, has worked
out well. However, at the time of writing, a new version is being implemented
based on the BCEL library [8], which is Open Source, unlike Jtrek, which has
been discontinued.

3.2 Observer Framework

As described above, runtime analysis is divided into two parts: instrumenta-
tion and execution of the instrumented program. To minimize the impact on
the program under test, events should contain minimal information. Two cat-
egories of information need to be transmitted: essential information, needed
to detect property violations, and contertual information, needed to print out
informative error messages when properties get violated. Instrumentation is
done such that contextual information is sent only when it changes, and not
with every event. The event observer, (see Figure 4), can be correspondingly
be split into two stages. The event dispatcher reads the events and sends a
reconstructed version to one or more property analyzers.

The event dispatcher parses events, and converts them into a unified format,
accommodating different instrumentation packages. The contextual informa-
tion, transmitted in internal events (not emitted to the property analyzers),

Observer

Event

.| Interpretation
analysis

Instrumented | Events
program

Event dispatcher

Internal events

Event

Parsing
Event
conversion

Observable events

—»
Property Result
analyzer

Figure 4. The observer architecture.

include thread names, code locations, and reentrant acquisitions of locks (lock
counts). The event dispatcher package maintains a database with the full
context of the events. This allows for writing simpler property analyzers. The
property analyzers subscribe to particular event types made accessible through
an observer interface [10] and are completely decoupled from each other.

It is up to each property analyzer to record all relevant information for keeping
a history of the events, since the context maintained by the event dispatcher
changes dynamically with event evaluation. The property analyzer reports
violations of properties in its model using the stored data and context in-
formation. The main advantages of this approach are the decoupling of the
instrumentation package from observation, and the ability to re-use one event
stream for several property analyzers.

3.8 Temporal Logic Monitoring

Temporal logic in general, and Linear-time Temporal Logic (LTL) in particu-
lar, has been investigated for the last twenty years as a specification language
for reactive systems [29]. LTL is an extension of propositional logic, which con-
tains the standard connectives A, V, — and —, with four temporal operators:
Op (always p), Op (eventually p), p U ¢ (p until ¢ — and ¢ has to eventually
occur), op (in next step p), and four dual past-time operators (always p in
the past, p some time in the past, p since ¢, and in previous step p). As an
example, consider the future-time formula O(p — ©gq). It states that it is al-
ways the case (O), that when p holds, then eventually (<) ¢ holds. LTL has
the property of being intuitively similar to natural language and capable of
describing many interesting properties of reactive systems.

With respect to temporal logics, several specialized algorithms are imple-

10

mented in JPaX: traversing the execution trace either forward or backward,
based on either rewriting or automata generation, implemented in either Java
or Maude [6]. One of these algorithms will be briefly sketched. The interested
reader is referred to the bibliography for more elaborate descriptions.

Efficiency of runtime analysis algorithms is an important aspect of our re-
search, even if the observer operates off-line. A crucial observation is that
one can design more efficient algorithms if one focuses on segments of tem-
poral logics rather than on the entire logic. This observation allowed us to
develop optimal algorithms for future-time and for past-time temporal logics
separately. This segmentation does not arise as a problem in practice, because
in our experience so far one rarely or never uses both future and past-time
operators in the same requirements formula.

The algorithm described here monitors future-time temporal logic formulas
and is entirely based on rewriting technology. The idea is to maintain a set
of monitoring requirements as future-time LTL formulas and modify them
accordingly when a new event is emitted by the instrumented program. If one
of these formulas ever becomes false then it means that that formula has been
violated, so an error message is generated and an appropriate action is taken.
Four rewriting rules, inspired from known recurrences of temporal operators,
transform the formulas whenever a new nonterminal event e is received (and
four others, not mentioned here, are called on terminal events — terminating
a trace):

oF){e} — F
OF){e} — F{e} AOF,
OF){e} — F{e} Vv OF,

(
(
(
(FU F'){e} - F'{e} Vv (F{e} N\FU F")

The formula F'{e}, for some formula F, is the (transformed) formula which
should hold next, after receiving the event e. For example, for GF to hold
now, where the first event in the remaining trace is e, either F' must hold now
(F{e}), or OF must again hold in the future, thus postponing the obligation.
In addition, a rewriting based boolean simplification procedure, due to Hsiang
[21] and based on the Boolean ring simplification, is used on-the-fly to keep the
formula in a canonical compact form, more precisely as an exclusive disjunction
of conjunctions. The following theorem claims that the just presented very
simple and succinct rewriting-based monitoring algorithm above is optimal:

Theorem 1 For any formula F' of size m and any sequence of events to be
monitored €1, €, ..., €y, the formula F{e;}{ex}...{e,} needs O(2™) space to be
stored. Moreover, the exponential space cannot be avoided: any monitoring al-

11

gorithm for LTL requires space Q(2c\/m) space, where ¢ s some fixed constant.
It can be shown that the lower bound can be further refined to Q(2™).

Proof As mentioned above, due to the Boolean ring simplification rules, any
LTL formula is kept in a canonical form, which is an exclusive disjunction of
conjunctions. Each conjunct is either a proposition or otherwise it has a tem-
poral operator at the top. Moreover, after processing any number of events ey,
€2, .., €, the conjuncts in the normal form of F'{e; }{es}...{e,} are sub-terms
of the initial formula F, each being a proposition or otherwise having a tem-
poral operator at its top. Since there are at most m such sub-formulas of F', it
follows that there are at most 2™ possibilities to combine them in a conjunc-
tion. Therefore, one needs space O(2™) to store any exclusive disjunction of
such conjunctions. This reasoning only applies to “idealistic” rewriting engines,
which carefully optimize space needs during rewriting. Since the implemen-
tation details of Maude are not public, it is not clear to us whether Maude
is able to attain this space upper bound in all practical situations. However,
space or time resources were never a problem in our practical experiments.

For the space lower bound of any finite trace LTL monitoring algorithm, con-
sider a simplified framework with only two atomic predicates and therefore
only four possible states. For simplicity, these four states are encoded by 0, 1,
and $. Consider also some natural number k£ and the language:

Ly = {o#w#0'$w | w € {0,1}F and 0,0’ € {0,1, #}*}.

This language was previously used in several works [25,26,32] to prove lower
bounds. The language can be shown to contain exactly those finite traces
satisfying the following LTL formula [26] of size ©(k?):

$p = [(=8) U ($ A oDO(=8))] A
O[# A oF 1 A A ((0°0 A O($ — 0%0)) Vv (o1 A O($ — 0'1)))].

Let us define an equivalence relation on finite traces in (0 + 1 + #)*. For a
o € (04 1+ #)*, define S(o) = {w € (0 + 1)F | I\, Xo. MiF#wH#y = o}
01 =g 09 if and only if S(oy) = S(02). Now observe that the number of
equivalence classes of = is 22°; this is because for any S C (0 + 1), there is
a o such that S(o) = S.

Since |¢x| = ©(k?), it follows that there is some constant ¢’ such that |¢;] <
c'k? for all large enough k. Let ¢ be the constant 1/v/¢. This lower bound result

12

can be proven by contradiction. Suppose A is an LTL forward monitoring
algorithm that uses less that 2°V™ space for any LTL formulas of large enough
size m. Consider the behavior of the algorithm A on inputs of the form ¢y.
So m = |¢p| < k%, and A uses less than 2% space. Since the number of
equivalence classes of = is 22k, by the pigeon hole principle there must be
two strings o; #, oo such that the memory of A on ¢, after reading o $
is the same as the memory after reading 0.$. In other words, A running on
¢r will give the same answer on all traces of the form o,$w and go$w. Now
since 01 Zj 09, it follows that (S(oy) \ S(o2) U (S(02) \ S(01)) # 0. Take
w € (S(o1) \ S(02) U (S(02) \ S(01)). Then clearly, exactly one out of oy$w
and oo$w is in Ly, and so A running on ¢, gives the wrong answer on one of
these inputs. Therefore, A is not correct. O

Using memoization (or hashing) techniques provided by advanced rewriting
engines such as Maude, the simple rewriting algorithm above performs quite
well in practice. It was able to monitor 100 million events in less than 3 minutes
on a formula O(g — (—r) U y) stating a safety policy of a traffic light
controller (yellow should come after green). The interested reader is referred
to [17,18] for proofs of correctness, complexity analysis and evaluation of this
algorithm.

A second approach to building LTL observers based on automata construc-
tion is found in [18]. A rewriting-based algorithm for monitoring past-time
LTL requirements formulas has been presented in [15], which is quite differ-
ent from the one for future-time LTL. A dynamic programming approach to
monitoring past-time LTL formulas is presented in [19]. Recently, a new rule-
based framework for runtime monitoring, named Eagle, has been developed
[2]. This framework is very powerful in allowing the user to define a custom
temporal logic using simple equational definitions. Since rules can be param-
eterized with data values, as well as with formulas, the framework allows to
define logics over data, with real-time constraints being a special case.

3.4 The JPaX Concurrency Analyzer

Multi-threaded programs are particularly difficult to test due to the fact
that they are non-deterministic. A multi-threaded program consists of sev-
eral threads that execute in parallel. A main issue for a programmer of a
multi-threaded application is to ensure mutual exclusion to shared objects.
The goal is to avoid data races where one thread writes to an object while
other threads simultaneously either write to or read from the same object.
Multi-threading programming languages therefore provide constructs for en-
suring mutual exclusion, usually in the form of locks. If other threads utilize
the same lock when accessing an object, mutual exclusion is guaranteed. If

13

threads do not acquire the same lock (or do not acquire locks at all) when
accessing an object then there is a risk of a data race. The Eraser algorithm
[33] can detect such disagreements by analyzing single execution traces. The
Eraser algorithm has been implemented in the JPaX tool. Recent work has
shown that another kind of error, high-level data races, can still be present
in programs that use mutual exclusion for accessing individual fields, but not
sets of fields, correctly [1].

Deadlocks can occur when two or more threads acquire locks in a cyclic man-
ner. As an example of such a situation consider two threads 77 and 75 both
acquiring locks A and B. Thread 77 acquires first A and then B before releas-
ing A. Thread 7, acquires B and then A before releasing B. This situation
poses a deadlock situation since thread 77 can acquire A where after thread 75
acquires B, where after both threads cannot progress further. JPaX includes
such a deadlock detection algorithm. It builds a lock graph, where nodes are
locks and edges represent the lock hierarchy. That is, for the above example,
there will be an edge from A to B and another edge from B to A. Hence for
this example the graph contains a cycle, and a cycle represents a potential
deadlock situation. This algorithm yields false positives (false warnings) and
false negatives (missed deadlocks). An extension to this algorithm reduces the
number of false positives [3].

4 Case Study: A Planetary Rover Controller

The case study described here is the planetary rover controller K9, and in
particular its executive subsystem, developed at NASA Ames Research Center
— a full account of this case study is described in [5]. The executive receives
plans of actions that the rover is requested to carry out, and executes these
plans. First a description of the system is presented, including a description
of what plans (the input domain) look like. Then it is outlined how plans
(test inputs) can be automatically generated using model checking. Finally
it is described how, for each plan, one can automatically generate a set of
temporal logic properties that the executive must satisfy when executing the
plan.

4.1 System Description

The executive is a multi-threaded system (35,000 lines of C+-+ code) that
receives flexible plans from a planner, which it executes according to a plan
language semantics. A plan is a hierarchical structure of actions that the rover
must perform. Traditionally, plans are deterministic sequences of actions. How-

14

Plan — Node (block

Node — Block | Task :id plan
Block — (block :continue-on-failure
NodeAttr :node-1list (
(task

:node-list (NodeList))
:id drivel

:start-condition (time +1 +5)
:end-condition (time +1 +30)
:action BaseMovel

:duration 20

NodeList ~— Node NodeList | €
Task — (task
NodeAttr

raction Symbol

[:fail])
[:duration DurationTime]) (task

NodeAttr — :id Symbol +id drive?
[:start-condition Condition] rend-condition (time +10 +16)
[:end-condition Condition] raction BaseMove?
[:continue-on-failure] <fail

Condition — (time StartTime EndTime))))

Figure 5. Plan grammar (left) and an example of a plan (right).

ever, increased rover autonomy requires added flexibility. The plan language
therefore allows for branching based on conditions that need to be checked,
and also for flexibility with respect to the starting time and ending time of
an action. This section gives a short presentation of the (simplified) language
used in the description of the plans that the rover executive must execute.

4.1.1 Plan Syntaz

A plan is a node; a node is either a task, corresponding to an action to be
executed, or a block, corresponding to a logical group of nodes. Figure 5 (left)
shows the grammar for the language. All node attributes, with the exception
of the node’s id, are optional. Each node may specify a set of conditions, e.g.
the start condition (that must be true at the beginning of the node execution)
and the end condition (that must be true at the end of the node execution).
Each condition includes information about a relative or absolute time window,
indicating a lower and an upper bound on the time. The continue-on-failure
flag indicates what the behavior will be when node failure is encountered.

The attributes fail and duration were added to the original plan syntax to
facilitate testing of the executive. That is, during testing using test case gen-
eration, the real actions are never executed since this would require operating
the rover mechanics. The :fail and :duration attributes replace the actions
during testing. The fail flag for a task specifies the action status after execu-
tion; the duration specifies the duration of the action. Figure 5 (right) shows
a plan that has one block with two tasks (drivel and drive2). The time
windows here are relative (indicated by the '+ signs in the conditions).

15

class UniversalPlanner { ... static Node UniversalBlock() {
static int nNodes = 0; nNodes--;
static int tRange = 0; List0fNodes 1 = new List0fNodes();
for (Node n = UniversalNode();
static void Plan(int nn, int tr) { n != null; n = UniversallNode())
nNodes = nn; tRange = tr; 1.pushEnd(n);
UniversalAttributes(); Block b =
Node plan = UniversalNode(); new Block(id, 1, start, end,
print(plan); continueOnFailure);
assert(false); return b;
} }
static Node UniversalNode() { static Symbol id;
if (nNodes == 0) return null; static TimeCondition start, end;
if (chooseBool()) return null; static boolean continueOnFailure;
if (chooseBool())
return UniversalTask(); static UniversalAttributes() {
return UniversalBlock(); id = new Symbol();
} Symbolic sTimel = new SymInt();
Symbolic sTime2 = new SymInt();
static Node UniversalTask() { Symbolic._Path_cond._add_GT(sTime2, sTimel);
Symbol action = new Symbol(); start =
boolean fail = chooseBool(); new TimeCondition(sTimel.solution(),
int duration = choose(tRange); sTime2.solution());
Task t = Symbolic eTimel = new SymInt();
new Task(id, action, start, Symbolic eTime2 = new SymInt();
end, continueOnFailure, Symbolic._Path_cond._add_GT(eTime2,eTimel);
fail, duration); end = new TimeCondition(eTimel.solution(),
nNodes--; eTime2.solution());
return t; continueOnFailure = chooseBool();
} } 1}

Figure 6. Code that generates input plans for system under test.

4.1.2 Plan Semantics

For every node, execution proceeds through the following steps: (1) Wait until
the start condition is satisfied; if the current time passes the end of the start
condition, the node times out and this is a node failure. (2) The execution
of a task proceeds by invoking the corresponding action. The action takes
exactly the time specified in the :duration attribute. Note that this attribute
during testing replaces the actual execution of the action on the rover. The
action’s status must be fail, if :fail is true or the time conditions are not
met; otherwise, the status must be success. If the action’s status indicates
failure, its task fails. The execution of a block simply proceeds by executing
each of the nodes in the node-list in order. (3) If the time exceeds the end
condition, the node fails. On a node failure, when execution returns to the
sequence, the value of the failed node’s continue-on-failure flag is checked. If
true, execution proceeds to the next node in the sequence. Otherwise the node
failure is propagated to any enclosing nodes. If the node failure passes out to
the top level of the plan, the remainder of the plan is aborted.

16

4.2 Test Input Generation

Figure 6 shows part of the Java code, referred to as the universal planner, that
is used to generate plans (i.e., test inputs for the executive). The framework
suggested in Section 2 is used where an annotated Java program specifies only
the structure of the inputs together with the preconditions on this structure.
Model checking with symbolic execution generates the inputs. In order to spec-
ify the structure non-deterministic choice (choose methods) are exploited over
all structures allowed in the grammar presented in Figure 5, and preconditions
are specified as constraints over some of the integer variables in the structure.
For the latter, only time points are considered. Furthermore, these represent
inputs to our specification, to allow symbolic execution and constraint solving
to generate valid test cases. For brevity, only a small sample set of constraints
is shown here (stating that the end time is larger than the start time of an in-
terval). In the full version there are constraints relating different time-points,
corner cases where start-times are given after end times, etc.

To illustrate the flexibility in our approach, some of the variables are consid-
ered concrete inputs, e.g. the number of nodes in the total structure (nNodes),
and yet others, e.g. the duration of a task (duration), is concretized by non-
deterministic choice. The assertion in the program specifies that it is not pos-
sible to create a “valid” plan (i.e., executions that reach this assertion generate
valid plans). The JPF model checker model checks the universal planner and
is thus used to explore the (infinite) state space of the generated input plans.
Different search strategies find multiple counterexamples (to the assertion); for
each counterexample JPF is run in simulation mode to print the generated
plan to a file, which then serves as input to the rover.

class PathCondition { ...
Constraints c;
void _add_GT(Symbolic el,
Symbolic e2){

class Symbolic { ...
static PathCondition _Path_cond;

SymbOI?c _p}us(Symboll? e {...} c.add_constraint_GT(el,e2);
Symbolic _minus(Symbolic e) { ... } . s R
int solution() { } if (!c.is_satisfiable())

3 e backtrack();

return;

+}

Figure 7. Library classes for symbolic execution.

Figure 7 gives part of the library classes that provide symbolic execution.
Class Symbolic implements all symbolic constraints and has (amongst others)
a subclass SymInt that represents symbolic integer values. The static field
Symbolic._Path_cond stores the (numeric) path condition. Method _add_GT
updates the path condition with the greater-than constraint. Method

is_satisfiable uses the Omega library to check if the path condition is
infeasible (in which case, JPF will backtrack). The solution method first
solves the constraints and then returns one solution value for a symbolic integer
(solutions are currently not defined for non-integer symbolic values).

17

e Ostart(plan), i.e., the initial node plan should eventually start.

e O(start(plan) — <1 start(drivel)), i.e., if the plan starts, then task drivel
should begin execution within 1 and 5 time units.

o O(start(drivel) — (<1 3psuccess(drivel) V Ofail(drivel))), i.e., if task drivel
starts, then it should end successfully within 1 and 30 time units or it should
eventually terminate with a failure.

e O(success(drivel) — Ostart(drive2)), i.e., if task drivel ends successfully, then
task drive2 should eventually begin execution.

e O(end(drive2) — Osuccess(plan)), i.e., termination of task drive2 implies suc-
cessful termination of the whole plan (due to continue-on-failure flag).

e Osuccess(drivel), i.e., task drivel should end successfully (since :duration is
within time window).

o Ofail(drive2), i.e., task drive2 should fail (due to :fail).

Figure 8. Temporal logic properties representing partial semantics of plan in Fig. 5.

4.8 System Analysis

The semantics of a particular plan can very naturally be formulated in tem-
poral logic. In writing such properties, the following predicates were used:
start(id) (true immediately after the start of the execution of the node with
the corresponding id), success(id) (true when the execution of the node ends
successfully), fail(id) (true when the execution of the node ends with a fail-
ure), and end(id), which denotes success(id) V fail(id). We instrumented the
code to monitor these predicates. For each plan we further automatically gen-
erated a collection of temporal properties over these predicates and verified
their validity on execution traces. As an example, the properties for the plan
shown in Figure 5 (right) are shown in Figure 8. This set of properties does
not fully represent the semantics of the plan, but the approach appears to be
sufficient to catch errors.

The runtime analysis identified a number of errors in the executive. A prelim-
inary, partially automated system for runtime testing found a deadlock and a
data race. For the deadlock, the additional instrumentation triggered the dead-
lock during execution, but in fact the pattern existed in the un-instrumented
version of the executive, and would have been identified by the instrumenta-
tion, even if it had not occurred explicitly. The data race, involving access to
a shared variable used to communicate between threads, was suspected by the
developers, but had not been confirmed in code. The trace analysis allowed
the developers to see the read/write pattern clearly and redesign the commu-
nication. The fully automated testing system detected a bug that had been

18

seeded in the code for verification purposes: the bug produced an execution
failure when a plan node was processed after the beginning of its start window.
Finally, the automated testing system found a missing feature that had been
overlooked by the developers: the lower bounds on execution duration were
not enforced, so the temporal logic model predicted failure when execution in
fact succeeded. This latter error was unknown to the developers, and it showed
up later during actual rover operation before it was corrected.

5 Conclusions and Future Work

A framework for testing based on automated test case generation and runtime
analysis has been presented. This paper proposed and demonstrated the use
of model checking and symbolic execution for test case generation, and the
use of rewriting-based temporal logic monitoring during the execution of the
test cases. The framework requires construction of a test input generator and
a property generator for the application. From that, an arbitrarily large test
suite can be automatically generated, executed and verified to be in conformity
with the properties. For each input sequence (generated by the test input
generator) the property generator constructs a set of properties that must
hold when the program under test is executed on that input. The program is
instrumented to emit an execution log of events. An observer checks that the
event log satisfies the set of properties.

We take the position that writing test oracles as temporal logic formulas is
both natural and leverages algorithms that efficiently check if execution on
a test input conforms to the properties. While property definition is often
difficult, at least for some domains, an effective approach is to write a property
generator, rather than a universal set of properties that are independent of
the test input. Note also that the properties need not completely characterize
correct execution. Instead, a user can choose among a spectrum of weak but
easily generated properties to strong properties that may require construction
of complex formulas.

In the near future, we will continue the development of a complete testing
environment for the K9 rover executive, and seek to get this technology trans-
ferred to NASA engineers. We will be exploring how to improve the quality of
the generated test suite by altering the search strategy of the model checker,
and by improving the symbolic execution technology. We will also investigate
the use of real-time logic and other more complicated logics. In particular, the
Eagle logic should provide a good framework for monitoring. We are continu-
ing the work on instrumentation of Java bytecode and will extend this work
to C and C++. Our research group has done fundamental research in other
areas, such as software model checking (model checking the application itself,

19

and not just the input domain), and static analysis. In general, our ultimate
goal is to combine the different technologies into a single coherent framework.

References

1]

2]

C. Artho, K. Havelund, and A. Biere. High-level Data Races. In VVEIS 03,
April 2003.

H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime
Verification. In Proceedings of Fifth International Conference on Verification,
Model Checking and Abstract Interpretation, January 2004 — to appear., August
2003.

S. Bensalem and K. Havelund. Reducing False Positives in Runtime Analysis of
Deadlocks. Internal report, to be published, October 2002.

C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing Based
on Java Predicates. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), July 2002.

G. Brat, D. Giannakopoulou, A. Goldberg, K. Havelund, M.Lowry,
C. Pasareanu, A. Venet, and W. Visser. A Comparative Field Study of Advanced
Verification Technologies. Internal report, in preparation for submission,
November 2002.

M. Clavel, F. J. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
J. F. Quesada. Maude : Specification and Programming in Rewriting Logic,
March 1999. Maude System documentation at
http://maude.csl.sri.com/papers.

S. Cohen. Jtrek. Compaq, http://www.compaq.com/java/download/jtrek.
Markus Dahm. BCEL. http://jakarta.apache.org/bcel/.

D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model
Checking and Software Verification, volume 1885 of LNCS, pages 323-330.
Springer, 2000.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns — Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[11] A. Goldberg and K. Havelund. Instrumentation of Java Bytecode for Runtime

Analysis. In Proc. Formal Techniques for Java-like Programs, volume 408 of
Technical Reports from ETH Zurich, Switzerland, 2003. ETH Zurich.

[12] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating Finite State

Machines from Abstract State Machines. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), July 2002.

20

[13] A. Groce and W. Visser. Model Checking Java Programs using Structural
Heuristics. In Proceedings of the 2002 International Symposium on Software
Testing and Analysis (ISSTA). ACM Press, July 2002.

[14] A. Hartman. Model Based Test Generation Tools.
http://www.agedis.de/documents/ModelBasedTestGenerationTools_cs.pdf.

[15] K. Havelund, S. Johnson, and G. Rosu. Specification and Error Pattern Based
Program Monitoring. In Proceedings of the European Space Agency workshop
on On-Board Autonomy, Noordwijk, The Netherlands, October 2001.

[16] K. Havelund and G. Rogu. Monitoring Java Programs with Java PathExplorer.
In Proceedings of the First International Workshop on Runtime Verification
(RV’01), volume 55-2 of ENTCS, pages 97-114, Paris, France, July 2001.
Elsevier Science.

[17] K. Havelund and G. Rosu. Monitoring Programs using Rewriting. In Proceedings
of the International Conference on Automated Software Engineering (ASE’01),
pages 135-143. TEEE CS Press, 2001. Coronado Island, California.

[18] K. Havelund and G. Rosu. A Rewriting-based Approach to Trace Analysis.
Submitted for journal publication, September 2002.

[19] K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Tools
and Algorithms for Construction and Analysis of Systems (TACAS’02), volume
2280 of LNCS, pages 342-356. Springer, 2002.

[20] H. Hong, I. Lee, O. Sokolsky, and H. Ural. A Temporal Logic Based Theory
of Test Coverage and Generation. In Proceedings of the 8th International
Conference on Tools and Algorithms for Construction and Analysis of Systems

(TACAS), April 2002.

[21] Jieh Hsiang. Refutational Theorem Proving using Term Rewriting Systems.
Artificial Intelligence, 25:255-300, 1985.

[22] S. Khurshid, C. Pasareanu, and W. Visser. Generalized Symbolic Execution for
Model Checking and Testing. In Proceedings of TACAS’03: Tools and Algorithms
for the Construction and Analysis of Systems, volume 2619 of LNCS, Warsaw,
Poland, April 2003.

[23] J. C. King. Symbolic Execution and Program Testing. Communications of the
ACM, 19(7):385-394, 1976.

[24] B. Korel. Automated Software Test Data Generation. IEEE Transaction on
Software Engineering, 16(8):870-879, August 1990.

[25] O. Kupferman and M. Y. Vardi. Freedom, Weakness, and Determinism: From
linear-time to branching-time. In Proceedings of the IEEE Symposium on Logic
in Computer Science, pages 81-92, 1998.

[26] O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. In
Proceedings of the Conference on Computer-Aided Verification, 1999.

21

[27] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Programming. O’Reilly, 1998.
[28| Parasoft. http://www.parasoft.com.

[29] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 4677, 1977.

[30] W. Pugh. The Omega Test: A Fast and Practical Integer Programming
Algorithm for Dependence Analysis. Communications of the ACM, 31(8),
August 1992.

[31] Purify: Fast Detection of Memory Leaks and Access Errors. January 1992.

[32] G. Rosu and M. Viswanathan. Testing Extended Regular Language Membership
Incrementally by Rewriting. In Rewriting Techniques and Applications
(RTA’03), volume 2706 of LNCS, pages 499-514. Springer-Verlag, 2003.

[33] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
Dynamic Data Race Detector for Multithreaded Programs. ACM Transactions
on Computer Systems, 15(4):391-411, November 1997.

[34] N. Tracey, J. Clark, and K. Mander. The Way Forward for Unifying Dynamic
Test-Case Generation: The Optimisation-Based Approach. In International

Workshop on Dependable Computing and Its Applications (DCIA), pages 169—
180. IFIP, January 1998.

[35] T-VEC. http://www.t-vec.com.

[36] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In
Proceedings of ASE’02: The 15th IEEE International Conference on Automated
Software Engineering. IEEE CS Press, September 2000.

22

